Regulatory Elements Located in the Upstream Region of the Rhizobium leguminosarum rosR Global Regulator Are Essential for Its Transcription and mRNA Stability

نویسندگان

  • Kamila Rachwał
  • Paulina Lipa
  • Iwona Wojda
  • José-María Vinardell
  • Monika Janczarek
چکیده

Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with clover (Trifolium spp.). Previously, the rosR gene, encoding a global regulatory protein involved in motility, synthesis of cell-surface components, and other cellular processes was identified and characterized in this bacterium. This gene possesses a long upstream region that contains several regulatory motifs, including inverted repeats (IRs) of different lengths. So far, the role of these motifs in the regulation of rosR transcription has not been elucidated in detail. In this study, we performed a functional analysis of these motifs using a set of transcriptional rosR-lacZ fusions that contain mutations in these regions. The levels of rosR transcription for different mutant variants were evaluated in R. leguminosarum using both quantitative real-time PCR and β-galactosidase activity assays. Moreover, the stability of wild type rosR transcripts and those with mutations in the regulatory motifs was determined using an RNA decay assay and plasmids with mutations in different IRs located in the 5'-untranslated region of the gene. The results show that transcription of rosR undergoes complex regulation, in which several regulatory elements located in the upstream region and some regulatory proteins are engaged. These include an upstream regulatory element, an extension of the -10 element containing three nucleotides TGn (TGn-extended -10 element), several IRs, and PraR repressor related to quorum sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of rosR Expression and Exopolysaccharide Production in Rhizobium leguminosarum bv. trifolii by Phosphate and Clover Root Exudates

The acidic exopolysaccharide (EPS) secreted in large amounts by the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii is required for the establishment of an effective symbiosis with the host plant Trifolium spp. EPS biosynthesis in rhizobia is a very complex process regulated at both transcriptional and post-transcriptional levels and influenced by various nutritional an...

متن کامل

Expression of the Rhizobium leguminosarum bv. trifolii pssA gene, involved in exopolysaccharide synthesis, is regulated by RosR, phosphate, and the carbon source.

Rhizobium leguminosarum bv. trifolii pssA encodes a glucosyl-isoprenylphosphate (IP)-transferase involved in the first step of exopolysaccharide (EPS) synthesis. It was found that the pssA gene is an important target for regulation of this biosynthetic pathway. The data of this study indicate that pssA transcription is a very complex and mainly positively regulated process. A detailed analysis ...

متن کامل

The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant reve...

متن کامل

Post-transcriptional regulation of NifA expression by Hfq and RNase E complex in Rhizobium leguminosarum bv. viciae.

NifA is the general transcriptional activator of nitrogen fixation genes in diazotrophic bacteria. In Rhizobium leguminosarum bv. viciae strain 8401/pRL1JI, the NifA gene is part of a gene cluster (fixABCXNifAB). In this study, results showed that in R. leguminosarum bv.viciae 8401/pRL1JI, host factor required (Hfq), and RNase E were involved in the post-transcriptional regulation of NifA expre...

متن کامل

Multiple genetic controls on Rhizobium meliloti syrA, a regulator of exopolysaccharide abundance.

Exopolysaccharides (EPS) are produced by a wide assortment of bacteria including plant pathogens and rhizobial symbionts. Rhizobium meliloti mutants defective in EPS production fail to invade alfalfa nodules. Production of EPS in R. meliloti is likely controlled at several levels. We have characterized a new gene of this regulatory circuit. syrA was identified by its ability to confer mucoid co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017